Croissance De L Intégrale De L

Verre Trempé Verre Feuilleté

Valeur moyenne d'une fonction Définition Soit $f$ une fonction continue sur un intervalle $[a, b]$. La valeur moyenne de $f$ sur $[a, b]$ est le nombre réel:\[m=\frac{1}{b-a}\int_a^b{f(x)\;\mathrm{d}x}. \] Voir l'animation Théorème Théorème dit de la moyenne Soit $f$ une fonction continue sur un intervalle $[a, b]$ il existe un nombre réel $c$ élément de $[a, b]$ tel que:\[f(c)=\frac{1}{b-a}\int_a^b{f(x)\;\mathrm{d}x}\] Voir la preuve On suppose la fonction $f$ croissante. Le résultat sera admis dans le cas général. On distingue deux cas. Si $a \lt b$. Puisque $f$ est croissante, pour tout réel $x$ dans $[a, b]$, $f(a)\le f(x)\le f(b)$. Croissance de l intégrale 3. Il s'en suit, d'après l'inégalité de la moyenne, que:\[(b-a)f(a)\le \int_a^b{f(x)\;\mathrm{d}x}\le (b-a)f(b). \]Puisque $b−a \gt 0$:\[f(a)\le \frac{1}{b-a}\int_a^b{f(x)}\;\mathrm{d}x\le f(b). \]Le réel $m=\dfrac{1}{b-a}\int_a^b{f(x)\;\mathrm{d}x}$ est dans l'intervalle $\bigl[f(a), f(b)\bigr]$. D'après le théorème des valeurs intermédiaires ($f$ est continue dur $[a, b]$), il existe un réel $c$ dans $[a, b]$ tel que:\[f(c)=\frac{1}{b-a}\int_a^b{f(x)}\;\mathrm{d}x\] Si $a \gt b$.

  1. Croissance de l intégrale c
  2. Croissance de l intégrale un
  3. Croissance de l intégrale 3

Croissance De L Intégrale C

\] Exemple On considère, pour $n\in \N^*$, la suite ${\left({I_n} \right)}_n$ définie par ${I_n}=\displaystyle\int_0^{\pi/2}{\sin^n(x)\;\mathrm{d}x}$. Sans calculer cette intégrale, montrer que la suite ${\left({I_n} \right)}_n$ vérifie pour $n\in \N^*$, $0\le {I_n}\le \dfrac{\pi}{2}$ et qu'elle est décroissante. Croissance de l intégrale c. Voir la solution Pour tout $n\in \N^*$ et tout $x\in \left[0, \dfrac{\pi}{2} \right]$, on a $0\le {\sin^n}(x)\le 1$. En intégrant cette inégalité entre $0$ et $\dfrac{\pi}{2}$, il vient:\[\int_0^{\pi/2}{0}\;\mathrm{d}t\le \int_0^{\pi/2}{\sin^n(x)}\;\mathrm{d}t\le \int_0^{\pi/2}{1}\;\mathrm{d}t\]c'est-à-dire:\[0\le I_n\le \frac{\pi}{2}. \]Par ailleurs, pour tout $x\in \left[0, \dfrac{\pi}{2} \right]$, on a $0\le \sin(x)\le 1$. Donc:\[\forall n\in \N^*, \;0\le {\sin^{n+1}}(x)\le {\sin^n}(x). \]En intégrant cette nouvelle inégalité entre $0$ et $\dfrac{\pi}{2}$, il vient:\[\int_0^{\pi/2}{0}\;\mathrm{d}t\le \int_0^{\pi/2}{\sin^{n+1}(x)}\;\mathrm{d}t\le \int_0^{\pi/2}{\sin^n(x)}\;\mathrm{d}t\]Ceci prouve que ${I_{n+1}}\le {I_n}$, c'est-à-dire que la suite ${\left({I_n} \right)}_n$ est décroissante.

Croissance De L Intégrale Un

Il est clair que F s'annule en a, et pour toute autre primitive G de f s'annulant en a, la différence F − G est de dérivée nulle donc est constante mais s'annule en a, donc F − G = 0. Toute fonction continue sur un intervalle I de R admet une primitive sur I. Au lieu d'utiliser l'intégrale de Riemann, on peut aussi démontrer ce corolaire d'une autre manière et transformer le théorème fondamental de l'analyse en définition de l'intégrale pour une fonction continue. Les propriétés de l'introduction s'en déduisent facilement. Soit f une fonction continue sur un intervalle I et F une primitive de f sur cet intervalle. Alors pour tout ( a, b) ∈ I 2 on a ∫ a b f ( t) d t = [ F ( t)] a b = F ( b) − F ( a). Cette propriété permet de calculer de nombreuses intégrales grâce aux formules de dérivées des fonctions de référence. Intégration par parties Soient f et g deux fonctions continues sur un intervalle I, avec g dérivable sur I. Positivité de l'intégrale. Soit F une primitive de f sur I et ( a, b) ∈ I 2. Alors on a ∫ a b f ( t) g ( t) d t = [ F ( t) g ( t)] a b − ∫ a b F ( t) g ′( t)d t.

Croissance De L Intégrale 3

Exercice 1 Quel est le signe de l'intégrale suivante? \[\int_0^3 {\left[ {{e^x} \times \ln (x + 2)} \right]} dx\] Exercice 2 1- Montrer que pour tout réel \(x \geqslant 1\) on a \(\frac{1}{x^2} \leqslant \frac{1}{x} \leqslant \frac{1}{\sqrt{x}}\) 2- Calculer \(\int_1^3 {\frac{dx}{x}}\) 3- En déduire un encadrement de \(\ln 3. Croissance de l intégrale un. \) Corrigé 1 Quel que soit \(x, \) son exponentielle est positive. Quel que soit \(x \geqslant 0, \) \(x + 2 \geqslant 2, \) donc \(\ln (x + 2) \geqslant 0. \) Un produit de facteurs positifs étant positif, l'intégrale l'est aussi sans l'ombre d'un doute. Corrigé 2 1- Tout réel \(x \geqslant 1\) est supérieur à sa racine carrée et inférieur à son carré. Donc \(1 \leqslant \sqrt{x} \leqslant x \leqslant x^2\) La fonction inverse étant décroissante sur \([1\, ; +∞[, \) nous avons: \(0 \leqslant \frac{1}{x^2} \leqslant \frac{1}{x} \leqslant \frac{1}{\sqrt{x}} \leqslant 1\) 2- Une primitive de la fonction inverse est la fonction logarithme (la notation entre crochets ci-dessous n'est pas toujours employée en terminale bien qu'elle soit très pratique).

31/03/2005, 18h27 #1 Deepack33 Croissance d'une suite d'intégrales ------ bonjour, je souhaiterais montrer que la suite In est croissante In= integral(x²e^(-x)) borne [0; n] je part donc du principe que si In est croissante alors In+1 - In supérieur a 0 dois je développer In+1 et In et ensuite montrer l'inégalité?? "Croissance" de l'intégrale. - Forum mathématiques autre analyse - 129885 - 129885. merci ----- 31/03/2005, 18h35 #2 matthias Re: Porblème croissance intérgale L'intégrale de n à n+1 d'une fonction positive étant positive.... pas vraiment besoin de calcul d'intégrales. 31/03/2005, 18h47 #3 bien vu merci bcp Discussions similaires Réponses: 2 Dernier message: 18/04/2007, 11h07 Réponses: 6 Dernier message: 26/01/2006, 07h47 Réponses: 8 Dernier message: 26/12/2005, 11h08 Réponses: 0 Dernier message: 25/10/2004, 18h14 Réponses: 3 Dernier message: 20/10/2004, 21h16 Fuseau horaire GMT +1. Il est actuellement 14h57.
Tue, 03 Sep 2024 14:26:46 +0000